Another integral to convolute is $ f_z(z)= \int \limits_{z}^{\infty} \lambda e^{-\lambda \tau} \cdot \lambda e^{\lambda (z-\tau)} d\tau $
where i found the answer to be (e^-lambda*z)/2
Another integral to convolute is $ f_z(z)= \int \limits_{z}^{\infty} \lambda e^{-\lambda \tau} \cdot \lambda e^{\lambda (z-\tau)} d\tau $
where i found the answer to be (e^-lambda*z)/2