We are told that a system is linear and given inputs

$ \,x_1(t)=e^{2jt}\, $ yields $ \,y_1(t)=te^{-2jt}\, $

$ \,x_2(t)=e^{-2jt}\, $ yields $ \,y_2(t)=te^{2jt}\, $

    • initial given statements copied from Jeff Kubascik

Since,

$ \cos(2t) = \frac {e^{i2t} + e^{-i2t}} {2} $

from the given input we know:

y(t) = t*x(-t)

If we multiply both t's in the equivalent cos(2t) by -1, then they simply switch places leaving the function unchanged. Next, multiply by t and you are given your result.

y(t) = t*cos(2t)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn