Given:

$ e^{2jt} \rightarrow System \rightarrow te^{-2jt} $

$ e^{-2jt} \rightarrow System \rightarrow te^{2jt} $


Euler's formula: $ e^{iy}=cos(y)+isin(y) $


Use Euler's formula to get cos(2t) in the the form of the givens:

$ \frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}=\frac{1}{2}cos(2t)+\frac{1}{2}isin(2t)+\frac{1}{2}cos(2t)-\frac{1}{2}isin(2t)=cos(2t) $


So, the systems response to cos(2t is:

       $  cos(2t) \rightarrow System \rightarrow tcos(2t) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang