ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 3


Solution

Let $ t_1=x_1-2 $, $ t_2=x_2+1 $
so that $ g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0 $ would have some convex property
with $ f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1 $
$ D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $
It is easy to see that $ \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $ is n.d .
Such that function at $ [2 -1]^T $ is strictly locally concave.


Similar Problem

2015 QE AC3 Prob1
2015 QE AC3 Prob3
2014 QE AC3 Prob2


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett