Real Analysis Qual Prep

Assignment 2: Functions of BV and Measures

- 1. Assume $\{f_n\}$ is a sequence of real-valued nondecreasing functions on I = [a, b], and suppose $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all $x \in I$. Is necessarily nondecreasing?
- 2. Show that a monotone function $f : [a, b] \to \mathbf{R}$ has at most countably many discontinuities, and they are all of the first kind. Conversely if D is an at most countable subset of [a, b], construct a monotone function whose set of discontinuities is precisely D.
- 3. A real-valued function f defined on I = [a, b] is said to be Lipschitz if there exists a constant c such that $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in I$. Show that if f is Lipschitz on I, it is BV there as well.
- 4. Let $f, g \in BV(I)$, with I = [a, b]. Show that $fg \in BV(I)$, and that if $|g(x)| \ge \epsilon > 0$ for all $x \in I$, then $f/g \in BV(I)$. Estimate V(fg; a, b) and V(f/g; a, b) in terms of V(f; a, b), V(g; a, b), and ϵ .
- 5. Let $\{q_1, q_2, ...\}$ be an enumeration of $\mathbf{Q} \cap (0, 1)$. Define $f : [0, 1] \to \mathbf{R}$ by $f(x) = \begin{cases} 2^{-n} & , x = q_n \\ 0 & , \text{otherwise} \end{cases}$ Show that f has bounded variation.
- 6. Is $f(x) = x \sin(\frac{1}{x})$ absolutely continuous? Is it of bounded variation? What about $g(x) = x^2 \sin(\frac{1}{x})$?
- 7. Let (X, \mathcal{S}, μ) be a measure space. For $A, B \subset X$, let

$$A\Delta B = (A \backslash B) \cup (B \backslash A).$$

- (a) If μ is complete, $A \in S$, $B \in X$, $\mu(A\Delta B) = 0$, show that $B \in S$ and $\mu(B) = \mu(A)$.
- (b) If $A, B \in S$ and $\mu(A \Delta B) = 0$, show $\mu(A) = \mu(B)$.
- (c) For $A, B \in S$, let $A \sim B$ if $\mu(A\Delta B) = 0$. Prove that \sim is an equivalence relation on S.
- (d) If $\mu(X) < \infty$, let $[A] \in S/ \sim$ and $[B] \in S/ \sim$ be two classes of equivalence on S/ \sim . Define

 $d([A], [B]) = \mu(A\Delta B), A \in [A], B \in [B].$

Prove that d is a metric on \mathcal{S}/\sim .

- 8. Let $E \subset \mathbf{R}$ be a Lebesgue measurable set and let $\delta > 0$. If μ is the Lebesgue measure and $\mu(E \cap (a, b)) \ge \delta(b a)$ for all intervals $(a, b) \subset \mathbf{R}$, show that $\mu(\mathbf{R} \setminus E) = 0$.
- 9. Prove that

$$\limsup_{n} (A_n \cap B_n) \subseteq (\limsup_{n} A_n) \cap (\limsup_{n} B_n),$$

and that

$$(\limsup_n A_n) \cup (\limsup_n B_n) = \limsup_n (A_n \cup B_n).$$

What are the corresponding statements for the lim inf?

10. Let (X, \mathcal{F}, μ) be a measure space, and let $E_n \subseteq \mathcal{F}$. Show that if

 $\mu(\bigcup_n E_n) < \infty$, and $\mu(E_n) \ge \eta > 0$ for infinitely many η 's,

then $\mu(\limsup_n E_n) > 0$. Find an example to show that the condition $\mu(\bigcup_n E_n) < \infty$ cannot be removed.

11. Let (X, \mathcal{F}, μ) be a measure space, and let $E_n \subseteq \mathcal{F}$. Show that

 $\mu(\liminf_n E_n) \le \liminf_n \mu(E_n),$

and, provided $\mu(\cup_n E_n) < \infty$,

$$\limsup_{n} \mu(E_n) \le \mu(\limsup E_n).$$

By means of example show that we may have strict inequalities above.

- 12. Let (X, \mathcal{F}, μ) be a measure space with $\mu(X) = 1$. Fix $1 \leq n \leq m$, and let E_1, \ldots, E_m be measurable sets with the property that for almost every $x \in X$ belongs to at least n of these sets. Prove that at least one of these sets must have μ -measure greater than or equal to n/m.
- 13. Suppose A, B are not Lebesgue measurable. Is the same true of $A \cup B$?
- 14. Suppose that E is a Lebesgue measurable subset of **R** such that $m(E) < \infty$. Define $f(x) = m((E+x) \cap E)$. Prove that f is a continuous function on **R** and that $\lim_{x \to \infty} f(x) = 0$.
- 15. Let $A \subseteq [0,1]$ be a measurable set of positive measure. Show that there exist $x \neq y \in A$ such that $x y \in \mathbf{Q}$.
- 16. Let A and B be (not necessarily Lebesgue measurable) subsets of **R** and let $|\cdot|_e$ stand for Lebesgue outer measure. Prove that if $|A|_e = 1$ and $|B|_e = 1$ and $|A \cup B|_e = 2$ then $|A \cap B|_e = 0$.

- 17. If $-1 \le r \le 1$, show there exist elements of the Cantor set x, y such that x y = r.
- 18. Let $A \subset \mathbf{R}$ be a Lebesgue measurable set. Show that if $0 \leq b \leq m(A)$, then there is a Lebesgue measurable set $B \subset A$ with m(B) = b.
- 19. Prove that there exists a Lebesgue measurable set $E \subset \mathbf{R}$ such that

 $0 < |E \cap I| < |I|$, for all bounded intervals $I \subset \mathbf{R}$.